The Graph QL Schema
Reading time: 9 min
The schema for your subgraph is in the file schema.graphql
. GraphQL schemas are defined using the GraphQL interface definition language.
Note: If you've never written a GraphQL schema, it is recommended that you check out this primer on the GraphQL type system. Reference documentation for GraphQL schemas can be found in the section.
Before defining entities, it is important to take a step back and think about how your data is structured and linked.
- All queries will be made against the data model defined in the subgraph schema. As a result, the design of the subgraph schema should be informed by the queries that your application will need to perform.
- It may be useful to imagine entities as "objects containing data", rather than as events or functions.
- You define entity types in
schema.graphql
, and Graph Node will generate top-level fields for querying single instances and collections of that entity type. - Each type that should be an entity is required to be annotated with an
@entity
directive. - By default, entities are mutable, meaning that mappings can load existing entities, modify them and store a new version of that entity.
- Mutability comes at a price, so for entity types that will never be modified, such as those containing data extracted verbatim from the chain, it is recommended to mark them as immutable with
@entity(immutable: true)
. - If changes happen in the same block in which the entity was created, then mappings can make changes to immutable entities. Immutable entities are much faster to write and to query so they should be used whenever possible.
- Mutability comes at a price, so for entity types that will never be modified, such as those containing data extracted verbatim from the chain, it is recommended to mark them as immutable with
The following Gravatar
entity is structured around a Gravatar object and is a good example of how an entity could be defined.
type Gravatar @entity(immutable: true) {id: Bytes!owner: BytesdisplayName: StringimageUrl: Stringaccepted: Boolean}
The following example GravatarAccepted
and GravatarDeclined
entities are based around events. It is not recommended to map events or function calls to entities 1:1.
type GravatarAccepted @entity {id: Bytes!owner: BytesdisplayName: StringimageUrl: String}type GravatarDeclined @entity {id: Bytes!owner: BytesdisplayName: StringimageUrl: String}
Entity fields can be defined as required or optional. Required fields are indicated by the !
in the schema. If the field is a scalar field, you get an error when you try to store the entity. If the field references another entity then you get this error:
Null value resolved for non-null field 'name'
Each entity must have an id
field, which must be of type Bytes!
or String!
. It is generally recommended to use Bytes!
, unless the id
contains human-readable text, since entities with Bytes!
id's will be faster to write and query as those with a String!
id
. The id
field serves as the primary key, and needs to be unique among all entities of the same type. For historical reasons, the type ID!
is also accepted and is a synonym for String!
.
For some entity types the id
for Bytes!
is constructed from the id's of two other entities; that is possible using concat
, e.g., let id = left.id.concat(right.id)
to form the id from the id's of left
and right
. Similarly, to construct an id from the id of an existing entity and a counter count
, let id = left.id.concatI32(count)
can be used. The concatenation is guaranteed to produce unique id's as long as the length of left
is the same for all such entities, for example, because left.id
is an Address
.
The following scalars are supported in the GraphQL API:
Tipo | Descrizione |
---|---|
Bytes | Byte array, rappresentato come una stringa esadecimale. Comunemente utilizzato per gli hash e gli indirizzi di Ethereum. |
String | Scalar for string values. Null characters are not supported and are automatically removed. |
Boolean | Scalar for boolean values. |
Int | The GraphQL spec defines Int to be a signed 32-bit integer. |
Int8 | An 8-byte signed integer, also known as a 64-bit signed integer, can store values in the range from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807. Prefer using this to represent i64 from ethereum. |
BigInt | Large integers. Used for Ethereum's uint32 , int64 , uint64 , ..., uint256 types. Note: Everything below uint32 , such as int32 , uint24 or int8 is represented as i32 . |
BigDecimal | BigDecimal High precision decimals represented as a significand and an exponent. The exponent range is from −6143 to +6144. Rounded to 34 significant digits. |
Timestamp | It is an i64 value in microseconds. Commonly used for timestamp fields for timeseries and aggregations. |
È possibile creare enum anche all'interno di uno schema. Gli enum hanno la seguente sintassi:
enum TokenStatus {OriginalOwnerSecondOwnerThirdOwner}
Once the enum is defined in the schema, you can use the string representation of the enum value to set an enum field on an entity. For example, you can set the tokenStatus
to SecondOwner
by first defining your entity and subsequently setting the field with entity.tokenStatus = "SecondOwner"
. The example below demonstrates what the Token entity would look like with an enum field:
More detail on writing enums can be found in the .
Un'entità può avere una relazione con una o più altre entità dello schema. Queste relazioni possono essere attraversate nelle query. Le relazioni in The Graph sono unidirezionali. È possibile simulare relazioni bidirezionali definendo una relazione unidirezionale su entrambe le "estremità" della relazione.
Le relazioni sono definite sulle entità come qualsiasi altro campo, tranne per il fatto che il tipo specificato è quello di un'altra entità.
Define a Transaction
entity type with an optional one-to-one relationship with a TransactionReceipt
entity type:
type Transaction @entity(immutable: true) {id: Bytes!transactionReceipt: TransactionReceipt}type TransactionReceipt @entity(immutable: true) {id: Bytes!transaction: Transaction}
Define a TokenBalance
entity type with a required one-to-many relationship with a Token entity type:
type Token @entity(immutable: true) {id: Bytes!}type TokenBalance @entity {id: Bytes!amount: Int!token: Token!}
Reverse lookups can be defined on an entity through the @derivedFrom
field. This creates a virtual field on the entity that may be queried but cannot be set manually through the mappings API. Rather, it is derived from the relationship defined on the other entity. For such relationships, it rarely makes sense to store both sides of the relationship, and both indexing and query performance will be better when only one side is stored and the other is derived.
Per le relazioni uno-a-molti, la relazione deve sempre essere memorizzata sul lato "uno" e il lato "molti" deve sempre essere derivato. Memorizzare la relazione in questo modo, piuttosto che memorizzare un array di entità sul lato "molti", migliorerà notevolmente le prestazioni sia per l'indicizzazione che per l'interrogazione del subgraph. In generale, la memorizzazione di array di entità dovrebbe essere evitata per quanto possibile.
We can make the balances for a token accessible from the token by deriving a tokenBalances
field:
type Token @entity(immutable: true) {id: Bytes!tokenBalances: [TokenBalance!]! @derivedFrom(field: "token")}type TokenBalance @entity {id: Bytes!amount: Int!token: Token!}
Per le relazioni molti-a-molti, come ad esempio gli utenti che possono appartenere a un numero qualsiasi di organizzazioni, il modo più semplice, ma generalmente non il più performante, di modellare la relazione è come un array in ciascuna delle due entità coinvolte. Se la relazione è simmetrica, è necessario memorizzare solo un lato della relazione e l'altro lato può essere derivato.
Define a reverse lookup from a User
entity type to an Organization
entity type. In the example below, this is achieved by looking up the members
attribute from within the Organization
entity. In queries, the organizations
field on User
will be resolved by finding all Organization
entities that include the user's ID.
type Organization @entity {id: Bytes!name: String!members: [User!]!}type User @entity {id: Bytes!name: String!organizations: [Organization!]! @derivedFrom(field: "members")}
A more performant way to store this relationship is through a mapping table that has one entry for each User
/ Organization
pair with a schema like
type Organization @entity {id: Bytes!name: String!members: [UserOrganization!]! @derivedFrom(field: "organization")}type User @entity {id: Bytes!name: String!organizations: [UserOrganization!] @derivedFrom(field: "user")}type UserOrganization @entity {id: Bytes! # Set to `user.id.concat(organization.id)`user: User!organization: Organization!}
Questo approccio richiede che le query scendano di un ulteriore livello per recuperare, ad esempio, le organizzazioni degli utenti:
query usersWithOrganizations {users {organizations {# this is a UserOrganization entityorganization {name}}}}
Questo modo più elaborato di memorizzare le relazioni molti-a-molti si traduce in una minore quantità di dati memorizzati per il subgraph e quindi in un subgraph che spesso è molto più veloce da indicizzare e da effettuare query.
As per GraphQL spec, comments can be added above schema entity attributes using the hash symbol #
. This is illustrated in the example below:
type MyFirstEntity @entity {# unique identifier and primary key of the entityid: Bytes!address: Bytes!}
Le query di ricerca fulltext filtrano e classificano le entità in base a un input di ricerca testuale. Le query full-text sono in grado di restituire corrispondenze per parole simili, elaborando il testo della query in gambi prima di confrontarli con i dati di testo indicizzati.
La definizione di una query fulltext include il nome della query, il dizionario linguistico utilizzato per elaborare i campi di testo, l'algoritmo di classificazione utilizzato per ordinare i risultati e i campi inclusi nella ricerca. Ogni query fulltext può comprendere più campi, ma tutti i campi inclusi devono appartenere a un unico tipo di entità.
To add a fulltext query, include a _Schema_
type with a fulltext directive in the GraphQL schema.
type _Schema_@fulltext(name: "bandSearch"language: enalgorithm: rankinclude: [{ entity: "Band", fields: [{ name: "name" }, { name: "description" }, { name: "bio" }] }])type Band @entity {id: Bytes!name: String!description: String!bio: Stringwallet: Addresslabels: [Label!]!discography: [Album!]!members: [Musician!]!}
The example bandSearch
field can be used in queries to filter Band
entities based on the text documents in the name
, description
, and bio
fields. Jump to for a description of the fulltext search API and more example usage.
query {bandSearch(text: "breaks & electro & detroit") {idnamedescriptionwallet}}
: From specVersion
0.0.4
and onwards, fullTextSearch
must be declared under the features
section in the subgraph manifest.
La scelta di una lingua diversa avrà un effetto definitivo, anche se talvolta sottile, sull'API di ricerca fulltext. I campi coperti da una query fulltext vengono esaminati nel contesto della lingua scelta, quindi i lessemi prodotti dall'analisi e dalle query di ricerca variano da lingua a lingua. Ad esempio, quando si utilizza il dizionario turco supportato, "token" viene ridotto a "toke", mentre il dizionario inglese lo riduce a "token".
Dizionari linguistici supportati:
Code | Dizionario |
---|---|
semplice | General |
da | Danish |
nl | Dutch |
en | English |
fi | Finnish |
fr | French |
de | German |
hu | Hungarian |
it | Italian |
no | Norwegian |
pt | Portoghese |
ro | Romanian |
ru | Russian |
es | Spanish |
sv | Swedish |
tr | Turkish |
Algoritmi supportati per ordinare i risultati:
Algorithm | Description |
---|---|
rank | Utilizza la qualità della corrispondenza (0-1) della query fulltext per ordinare i risultati. |
proximityRank | Similar to rank but also includes the proximity of the matches. |