Subgraph Manifest
Reading time: 14 min
The subgraph manifest, subgraph.yaml
, defines the smart contracts & network your subgraph will index, the events from these contracts to pay attention to, and how to map event data to entities that Graph Node stores and allows to query.
The subgraph definition consists of the following files:
-
subgraph.yaml
: Contains the subgraph manifest -
schema.graphql
: A GraphQL schema defining the data stored for your subgraph and how to query it via GraphQL -
mapping.ts
: code that translates event data into entities defined in your schema (e.g.mapping.ts
in this guide)
A single subgraph can:
-
Index data from multiple smart contracts (but not multiple networks).
-
Index data from IPFS files using File Data Sources.
-
Add an entry for each contract that requires indexing to the
dataSources
array.
The full specification for subgraph manifests can be found .
For the example subgraph listed above, subgraph.yaml
is:
specVersion: 0.0.4description: Gravatar for Ethereumrepository: https://github.com/graphprotocol/graph-toolingschema:file: ./schema.graphqlindexerHints:prune: autodataSources:- kind: ethereum/contractname: Gravitynetwork: mainnetsource:address: '0x2E645469f354BB4F5c8a05B3b30A929361cf77eC'abi: GravitystartBlock: 6175244endBlock: 7175245context:foo:type: Booldata: truebar:type: Stringdata: 'bar'mapping:kind: ethereum/eventsapiVersion: 0.0.6language: wasm/assemblyscriptentities:- Gravatarabis:- name: Gravityfile: ./abis/Gravity.jsoneventHandlers:- event: NewGravatar(uint256,address,string,string)handler: handleNewGravatar- event: UpdatedGravatar(uint256,address,string,string)handler: handleUpdatedGravatarcallHandlers:- function: createGravatar(string,string)handler: handleCreateGravatarblockHandlers:- handler: handleBlock- handler: handleBlockWithCallfilter:kind: callfile: ./src/mapping.ts
De viktiga posterna att uppdatera för manifestet är:
-
specVersion
: a semver version that identifies the supported manifest structure and functionality for the subgraph. The latest version is1.2.0
. See section to see more details on features & releases. -
description
: a human-readable description of what the subgraph is. This description is displayed in Graph Explorer when the subgraph is deployed to Subgraph Studio. -
repository
: the URL of the repository where the subgraph manifest can be found. This is also displayed in Graph Explorer. -
indexerHints.prune
: Defines the retention of historical block data for a subgraph. See in section. -
dataSources.source
: the address of the smart contract the subgraph sources, and the ABI of the smart contract to use. The address is optional; omitting it allows to index matching events from all contracts. -
dataSources.source.startBlock
: the optional number of the block that the data source starts indexing from. In most cases, we suggest using the block in which the contract was created. -
dataSources.source.endBlock
: The optional number of the block that the data source stops indexing at, including that block. Minimum spec version required:0.0.9
. -
dataSources.context
: key-value pairs that can be used within subgraph mappings. Supports various data types likeBool
,String
,Int
,Int8
,BigDecimal
,Bytes
,List
, andBigInt
. Each variable needs to specify itstype
anddata
. These context variables are then accessible in the mapping files, offering more configurable options for subgraph development. -
dataSources.mapping.entities
: the entities that the data source writes to the store. The schema for each entity is defined in the schema.graphql file. -
dataSources.mapping.abis
: one or more named ABI files for the source contract as well as any other smart contracts that you interact with from within the mappings. -
dataSources.mapping.eventHandlers
: lists the smart contract events this subgraph reacts to and the handlers in the mapping—./src/mapping.ts in the example—that transform these events into entities in the store. -
dataSources.mapping.callHandlers
: lists the smart contract functions this subgraph reacts to and handlers in the mapping that transform the inputs and outputs to function calls into entities in the store. -
dataSources.mapping.blockHandlers
: lists the blocks this subgraph reacts to and handlers in the mapping to run when a block is appended to the chain. Without a filter, the block handler will be run every block. An optional call-filter can be provided by adding afilter
field withkind: call
to the handler. This will only run the handler if the block contains at least one call to the data source contract.
A single subgraph can index data from multiple smart contracts. Add an entry for each contract from which data needs to be indexed to the dataSources
array.
Event handlers in a subgraph react to specific events emitted by smart contracts on the blockchain and trigger handlers defined in the subgraph's manifest. This enables subgraphs to process and store event data according to defined logic.
An event handler is declared within a data source in the subgraph's YAML configuration. It specifies which events to listen for and the corresponding function to execute when those events are detected.
dataSources:- kind: ethereum/contractname: Gravitynetwork: devsource:address: '0x731a10897d267e19b34503ad902d0a29173ba4b1'abi: Gravitymapping:kind: ethereum/eventsapiVersion: 0.0.6language: wasm/assemblyscriptentities:- Gravatar- Transactionabis:- name: Gravityfile: ./abis/Gravity.jsoneventHandlers:- event: Approval(address,address,uint256)handler: handleApproval- event: Transfer(address,address,uint256)handler: handleTransfertopic1: ['0xd8dA6BF26964aF9D7eEd9e03E53415D37aA96045', '0xc8dA6BF26964aF9D7eEd9e03E53415D37aA96325'] # Optional topic filter which filters only events with the specified topic.
While events provide an effective way to collect relevant changes to the state of a contract, many contracts avoid generating logs to optimize gas costs. In these cases, a subgraph can subscribe to calls made to the data source contract. This is achieved by defining call handlers referencing the function signature and the mapping handler that will process calls to this function. To process these calls, the mapping handler will receive an ethereum.Call
as an argument with the typed inputs to and outputs from the call. Calls made at any depth in a transaction's call chain will trigger the mapping, allowing activity with the data source contract through proxy contracts to be captured.
Anropsbehandlare utlöses endast i ett av två fall: när den specificerade funktionen anropas av ett konto som inte är kontraktet självt eller när den är markerad som extern i Solidity och anropas som en del av en annan funktion i samma kontrakt.
Note: Call handlers currently depend on the Parity tracing API. Certain networks, such as BNB chain and Arbitrum, does not support this API. If a subgraph indexing one of these networks contain one or more call handlers, it will not start syncing. Subgraph developers should instead use event handlers. These are far more performant than call handlers, and are supported on every evm network.
To define a call handler in your manifest, simply add a callHandlers
array under the data source you would like to subscribe to.
dataSources:- kind: ethereum/contractname: Gravitynetwork: mainnetsource:address: '0x731a10897d267e19b34503ad902d0a29173ba4b1'abi: Gravitymapping:kind: ethereum/eventsapiVersion: 0.0.6language: wasm/assemblyscriptentities:- Gravatar- Transactionabis:- name: Gravityfile: ./abis/Gravity.jsoncallHandlers:- function: createGravatar(string,string)handler: handleCreateGravatar
The function
is the normalized function signature to filter calls by. The handler
property is the name of the function in your mapping you would like to execute when the target function is called in the data source contract.
Each call handler takes a single parameter that has a type corresponding to the name of the called function. In the example subgraph above, the mapping contains a handler for when the createGravatar
function is called and receives a CreateGravatarCall
parameter as an argument:
import { CreateGravatarCall } from '../generated/Gravity/Gravity'import { Transaction } from '../generated/schema'export function handleCreateGravatar(call: CreateGravatarCall): void {let id = call.transaction.hashlet transaction = new Transaction(id)transaction.displayName = call.inputs._displayNametransaction.imageUrl = call.inputs._imageUrltransaction.save()}
The handleCreateGravatar
function takes a new CreateGravatarCall
which is a subclass of ethereum.Call
, provided by @graphprotocol/graph-ts
, that includes the typed inputs and outputs of the call. The CreateGravatarCall
type is generated for you when you run graph codegen
.
Förutom att prenumerera på kontrakts händelser eller funktionsanrop kan en subgraf vilja uppdatera sina data när nya block läggs till i kedjan. För att uppnå detta kan en subgraf köra en funktion efter varje block eller efter block som matchar en fördefinierad filter.
filter:kind: call
The defined handler will be called once for every block which contains a call to the contract (data source) the handler is defined under.
Note: The call
filter currently depend on the Parity tracing API. Certain networks, such as BNB chain and Arbitrum, does not support this API. If a subgraph indexing one of these networks contain one or more block handlers with a call
filter, it will not start syncing.
Avsaknaden av ett filter för en blockhanterare kommer att säkerställa att hanteraren kallas för varje block. En datakälla kan endast innehålla en blockhanterare för varje filttyp.
dataSources:- kind: ethereum/contractname: Gravitynetwork: devsource:address: '0x731a10897d267e19b34503ad902d0a29173ba4b1'abi: Gravitymapping:kind: ethereum/eventsapiVersion: 0.0.6language: wasm/assemblyscriptentities:- Gravatar- Transactionabis:- name: Gravityfile: ./abis/Gravity.jsonblockHandlers:- handler: handleBlock- handler: handleBlockWithCallToContractfilter:kind: call
Requires specVersion
>= 0.0.8
Note: Polling filters are only available on dataSources of kind: ethereum
.
blockHandlers:- handler: handleBlockfilter:kind: pollingevery: 10
The defined handler will be called once for every n
blocks, where n
is the value provided in the every
field. This configuration allows the subgraph to perform specific operations at regular block intervals.
Requires specVersion
>= 0.0.8
Note: Once filters are only available on dataSources of kind: ethereum
.
blockHandlers:- handler: handleOncefilter:kind: once
Den definierade hanteraren med filtret once kommer att anropas endast en gång innan alla andra hanterare körs. Denna konfiguration gör det möjligt för subgrafen att använda hanteraren som en initialiseringshanterare, som utför specifika uppgifter i början av indexeringen.
export function handleOnce(block: ethereum.Block): void {let data = new InitialData(Bytes.fromUTF8('initial'))data.data = 'Setup data here'data.save()}
The mapping function will receive an ethereum.Block
as its only argument. Like mapping functions for events, this function can access existing subgraph entities in the store, call smart contracts and create or update entities.
import { ethereum } from '@graphprotocol/graph-ts'export function handleBlock(block: ethereum.Block): void {let id = block.hashlet entity = new Block(id)entity.save()}
Om du behöver behandla anonyma händelser i Solidity kan du göra det genom att ange händelsens ämne 0, som i exemplet:
eventHandlers:- event: LogNote(bytes4,address,bytes32,bytes32,uint256,bytes)topic0: '0x644843f351d3fba4abcd60109eaff9f54bac8fb8ccf0bab941009c21df21cf31'handler: handleGive
An event will only be triggered when both the signature and topic 0 match. By default, topic0
is equal to the hash of the event signature.
Starting from specVersion
0.0.5
and apiVersion
0.0.7
, event handlers can have access to the receipt for the transaction which emitted them.
To do so, event handlers must be declared in the subgraph manifest with the new receipt: true
key, which is optional and defaults to false.
eventHandlers:- event: NewGravatar(uint256,address,string,string)handler: handleNewGravatarreceipt: true
Inside the handler function, the receipt can be accessed in the Event.receipt
field. When the receipt
key is set to false
or omitted in the manifest, a null
value will be returned instead.
Utlösarna för en datakälla inom ett block ordnas med hjälp av följande process:
- Händelse- och anropsutlösare ordnas först efter transaktionsindex inom blocket.
- Händelse- och anropsutlösare inom samma transaktion ordnas med hjälp av en konvention: händelseutlösare först, sedan anropsutlösare, varje typ respekterar ordningen de definieras i manifestet.
- Blockutlösare körs efter händelse- och anropsutlösare, i den ordning de definieras i manifestet.
Dessa ordningsregler kan komma att ändras.
Note: When new are created, the handlers defined for dynamic data sources will only start processing after all existing data source handlers are processed, and will repeat in the same sequence whenever triggered.
En vanlig mönster i EVM-kompatibla smarta kontrakt är användningen av register- eller fabrikskontrakt, där ett kontrakt skapar, hanterar eller hänvisar till ett godtyckligt antal andra kontrakt som var och en har sin egen stat och händelser.
The addresses of these sub-contracts may or may not be known upfront and many of these contracts may be created and/or added over time. This is why, in such cases, defining a single data source or a fixed number of data sources is impossible and a more dynamic approach is needed: data source templates.
First, you define a regular data source for the main contract. The snippet below shows a simplified example data source for the exchange factory contract. Note the NewExchange(address,address)
event handler. This is emitted when a new exchange contract is created on-chain by the factory contract.
dataSources:- kind: ethereum/contractname: Factorynetwork: mainnetsource:address: '0xc0a47dFe034B400B47bDaD5FecDa2621de6c4d95'abi: Factorymapping:kind: ethereum/eventsapiVersion: 0.0.6language: wasm/assemblyscriptfile: ./src/mappings/factory.tsentities:- Directoryabis:- name: Factoryfile: ./abis/factory.jsoneventHandlers:- event: NewExchange(address,address)handler: handleNewExchange
Then, you add data source templates to the manifest. These are identical to regular data sources, except that they lack a pre-defined contract address under source
. Typically, you would define one template for each type of sub-contract managed or referenced by the parent contract.
dataSources:- kind: ethereum/contractname: Factory# ... other source fields for the main contract ...templates:- name: Exchangekind: ethereum/contractnetwork: mainnetsource:abi: Exchangemapping:kind: ethereum/eventsapiVersion: 0.0.6language: wasm/assemblyscriptfile: ./src/mappings/exchange.tsentities:- Exchangeabis:- name: Exchangefile: ./abis/exchange.jsoneventHandlers:- event: TokenPurchase(address,uint256,uint256)handler: handleTokenPurchase- event: EthPurchase(address,uint256,uint256)handler: handleEthPurchase- event: AddLiquidity(address,uint256,uint256)handler: handleAddLiquidity- event: RemoveLiquidity(address,uint256,uint256)handler: handleRemoveLiquidity
In the final step, you update your main contract mapping to create a dynamic data source instance from one of the templates. In this example, you would change the main contract mapping to import the Exchange
template and call the Exchange.create(address)
method on it to start indexing the new exchange contract.
import { Exchange } from '../generated/templates'export function handleNewExchange(event: NewExchange): void {// Start indexing the exchange; `event.params.exchange` is the// address of the new exchange contractExchange.create(event.params.exchange)}
Note: A new data source will only process the calls and events for the block in which it was created and all following blocks, but will not process historical data, i.e., data that is contained in prior blocks.
Om tidigare block innehåller data som är relevanta för den nya datakällan, är det bäst att indexera dessa data genom att läsa kontraktets aktuella status och skapa enheter som representerar denna status vid den tidpunkt då den nya datakällan skapas.
Data source contexts allow passing extra configuration when instantiating a template. In our example, let's say exchanges are associated with a particular trading pair, which is included in the NewExchange
event. That information can be passed into the instantiated data source, like so:
import { Exchange } from '../generated/templates'export function handleNewExchange(event: NewExchange): void {let context = new DataSourceContext()context.setString('tradingPair', event.params.tradingPair)Exchange.createWithContext(event.params.exchange, context)}
Inside a mapping of the Exchange
template, the context can then be accessed:
import { dataSource } from '@graphprotocol/graph-ts'let context = dataSource.context()let tradingPair = context.getString('tradingPair')
There are setters and getters like setString
and getString
for all value types.
The startBlock
is an optional setting that allows you to define from which block in the chain the data source will start indexing. Setting the start block allows the data source to skip potentially millions of blocks that are irrelevant. Typically, a subgraph developer will set startBlock
to the block in which the smart contract of the data source was created.
dataSources:- kind: ethereum/contractname: ExampleSourcenetwork: mainnetsource:address: '0xc0a47dFe034B400B47bDaD5FecDa2621de6c4d95'abi: ExampleContractstartBlock: 6627917mapping:kind: ethereum/eventsapiVersion: 0.0.6language: wasm/assemblyscriptfile: ./src/mappings/factory.tsentities:- Userabis:- name: ExampleContractfile: ./abis/ExampleContract.jsoneventHandlers:- event: NewEvent(address,address)handler: handleNewEvent
Note: The contract creation block can be quickly looked up on Etherscan:
- Sök efter kontraktet genom att ange dess adress i sökfältet.
- Click on the creation transaction hash in the
Contract Creator
section. - Ladda sidan med transaktionsdetaljer där du hittar startblocket för det kontraktet.
The indexerHints
setting in a subgraph's manifest provides directives for indexers on processing and managing a subgraph. It influences operational decisions across data handling, indexing strategies, and optimizations. Presently, it features the prune
option for managing historical data retention or pruning.
This feature is available from specVersion: 1.0.0
indexerHints.prune
: Defines the retention of historical block data for a subgraph. Options include:
"never"
: No pruning of historical data; retains the entire history."auto"
: Retains the minimum necessary history as set by the indexer, optimizing query performance.- A specific number: Sets a custom limit on the number of historical blocks to retain.
indexerHints:prune: auto
The term "history" in this context of subgraphs is about storing data that reflects the old states of mutable entities.
History as of a given block is required for:
- , which enable querying the past states of these entities at specific blocks throughout the subgraph's history
- Using the subgraph as a in another subgraph, at that block
- Rewinding the subgraph back to that block
If historical data as of the block has been pruned, the above capabilities will not be available.
Using "auto"
is generally recommended as it maximizes query performance and is sufficient for most users who do not require access to extensive historical data.
For subgraphs leveraging , it's advisable to either set a specific number of blocks for historical data retention or use prune: never
to keep all historical entity states. Below are examples of how to configure both options in your subgraph's settings:
To retain a specific amount of historical data:
indexerHints:prune: 1000 # Replace 1000 with the desired number of blocks to retain
To preserve the complete history of entity states:
indexerHints:prune: never