Desarrollando > AssemblyScript API > AssemblyScript API

AssemblyScript API

Reading time: 21 min

Note: if you created a subgraph prior to graph-cli/graph-ts version 0.22.0, you're using an older version of AssemblyScript, we recommend taking a look at the Migration Guide

Esta página documenta qué API integradas se pueden usar al escribir mappings de subgrafos. Hay dos tipos de API disponibles listas para usar:

  • the Graph TypeScript library (graph-ts) and
  • code generated from subgraph files by graph codegen.

It is also possible to add other libraries as dependencies, as long as they are compatible with AssemblyScript. Since this is the language mappings are written in, the AssemblyScript wiki is a good source for language and standard library features.

Referencias de API

Enlace a esta sección

The @graphprotocol/graph-ts library provides the following APIs:

  • An ethereum API for working with Ethereum smart contracts, events, blocks, transactions, and Ethereum values.
  • A store API to load and save entities from and to the Graph Node store.
  • A log API to log messages to the Graph Node output and Graph Explorer.
  • An ipfs API to load files from IPFS.
  • A json API to parse JSON data.
  • A crypto API to use cryptographic functions.
  • Primitivas de bajo nivel para traducir entre los distintos tipos de sistemas, tales como, Ethereum, JSON, GraphQL y AssemblyScript.

The apiVersion in the subgraph manifest specifies the mapping API version which is run by Graph Node for a given subgraph.

VersionNotas del lanzamiento
0.0.9Adds new host functions eth_get_balance & hasCode
0.0.8Adds validation for existence of fields in the schema when saving an entity.
0.0.7Added TransactionReceipt and Log classes to the Ethereum types
Added receipt field to the Ethereum Event object
0.0.6Added nonce field to the Ethereum Transaction object
Added baseFeePerGas to the Ethereum Block object
0.0.5AssemblyScript upgraded to version 0.19.10 (this includes breaking changes, please see the Migration Guide)
ethereum.transaction.gasUsed renamed to ethereum.transaction.gasLimit
0.0.4Added functionSignature field to the Ethereum SmartContractCall object
0.0.3Added from field to the Ethereum Call object
etherem.call.address renamed to ethereum.call.to
0.0.2Added input field to the Ethereum Transaction object

Tipos Incorporados

Enlace a esta sección

Documentation on the base types built into AssemblyScript can be found in the AssemblyScript wiki.

The following additional types are provided by @graphprotocol/graph-ts.

import { ByteArray } from '@graphprotocol/graph-ts'

ByteArray represents an array of u8.

Construction

  • fromI32(x: i32): ByteArray - Decomposes x into bytes.
  • fromHexString(hex: string): ByteArray - Input length must be even. Prefixing with 0x is optional.

Type conversions

  • toHexString(): string - Converts to a hex string prefixed with 0x.
  • toString(): string - Interprets the bytes as a UTF-8 string.
  • toBase58(): string - Encodes the bytes into a base58 string.
  • toU32(): u32 - Interprets the bytes as a little-endian u32. Throws in case of overflow.
  • toI32(): i32 - Interprets the byte array as a little-endian i32. Throws in case of overflow.

Operators

  • equals(y: ByteArray): bool – can be written as x == y.
  • concat(other: ByteArray) : ByteArray - return a new ByteArray consisting of this directly followed by other
  • concatI32(other: i32) : ByteArray - return a new ByteArray consisting of this directly followed by the byte representation of other
import { BigDecimal } from '@graphprotocol/graph-ts'

BigDecimal is used to represent arbitrary precision decimals.

Note: Internally BigDecimal is stored in IEEE-754 decimal128 floating-point format, which supports 34 decimal digits of significand. This makes BigDecimal unsuitable for representing fixed-point types that can span wider than 34 digits, such as a Solidity ufixed256x18 or equivalent.

Construction

  • constructor(bigInt: BigInt) – creates a BigDecimal from an BigInt.
  • static fromString(s: string): BigDecimal – parses from a decimal string.

Type conversions

  • toString(): string – prints to a decimal string.

Math

  • plus(y: BigDecimal): BigDecimal – can be written as x + y.
  • minus(y: BigDecimal): BigDecimal – can be written as x - y.
  • times(y: BigDecimal): BigDecimal – can be written as x * y.
  • div(y: BigDecimal): BigDecimal – can be written as x / y.
  • equals(y: BigDecimal): bool – can be written as x == y.
  • notEqual(y: BigDecimal): bool – can be written as x != y.
  • lt(y: BigDecimal): bool – can be written as x < y.
  • le(y: BigDecimal): bool – can be written as x <= y.
  • gt(y: BigDecimal): bool – can be written as x > y.
  • ge(y: BigDecimal): bool – can be written as x >= y.
  • neg(): BigDecimal - can be written as -x.
import { BigInt } from '@graphprotocol/graph-ts'

BigInt is used to represent big integers. This includes Ethereum values of type uint32 to uint256 and int64 to int256. Everything below uint32, such as int32, uint24 or int8 is represented as i32.

The BigInt class has the following API:

Construction

  • BigInt.fromI32(x: i32): BigInt – creates a BigInt from an i32.

  • BigInt.fromString(s: string): BigInt– Parses a BigInt from a string.

  • BigInt.fromUnsignedBytes(x: Bytes): BigInt – Interprets bytes as an unsigned, little-endian integer. If your input is big-endian, call .reverse() first.

  • BigInt.fromSignedBytes(x: Bytes): BigInt – Interprets bytes as a signed, little-endian integer. If your input is big-endian, call .reverse() first.

    Type conversions

  • x.toHex(): string – turns BigInt into a string of hexadecimal characters.

  • x.toString(): string – turns BigInt into a decimal number string.

  • x.toI32(): i32 – returns the BigInt as an i32; fails if the value does not fit into i32. It's a good idea to first check x.isI32().

  • x.toBigDecimal(): BigDecimal - converts into a decimal with no fractional part.

Math

  • x.plus(y: BigInt): BigInt – can be written as x + y.
  • x.minus(y: BigInt): BigInt – can be written as x - y.
  • x.times(y: BigInt): BigInt – can be written as x * y.
  • x.div(y: BigInt): BigInt – can be written as x / y.
  • x.mod(y: BigInt): BigInt – can be written as x % y.
  • x.equals(y: BigInt): bool – can be written as x == y.
  • x.notEqual(y: BigInt): bool – can be written as x != y.
  • x.lt(y: BigInt): bool – can be written as x < y.
  • x.le(y: BigInt): bool – can be written as x <= y.
  • x.gt(y: BigInt): bool – can be written as x > y.
  • x.ge(y: BigInt): bool – can be written as x >= y.
  • x.neg(): BigInt – can be written as -x.
  • x.divDecimal(y: BigDecimal): BigDecimal – divides by a decimal, giving a decimal result.
  • x.isZero(): bool – Convenience for checking if the number is zero.
  • x.isI32(): bool – Check if the number fits in an i32.
  • x.abs(): BigInt – Absolute value.
  • x.pow(exp: u8): BigInt – Exponentiation.
  • bitOr(x: BigInt, y: BigInt): BigInt – can be written as x | y.
  • bitAnd(x: BigInt, y: BigInt): BigInt – can be written as x & y.
  • leftShift(x: BigInt, bits: u8): BigInt – can be written as x << y.
  • rightShift(x: BigInt, bits: u8): BigInt – can be written as x >> y.
import { TypedMap } from '@graphprotocol/graph-ts'

TypedMap can be used to store key-value pairs. See this example.

The TypedMap class has the following API:

  • new TypedMap<K, V>() – creates an empty map with keys of type K and values of type V
  • map.set(key: K, value: V): void – sets the value of key to value
  • map.getEntry(key: K): TypedMapEntry<K, V> | null – returns the key-value pair for a key or null if the key does not exist in the map
  • map.get(key: K): V | null – returns the value for a key or null if the key does not exist in the map
  • map.isSet(key: K): bool – returns true if the key exists in the map and false if it does not
import { Bytes } from '@graphprotocol/graph-ts'

Bytes is used to represent arbitrary-length arrays of bytes. This includes Ethereum values of type bytes, bytes32, etc.

The Bytes class extends AssemblyScript's Uint8Array and this supports all the Uint8Array functionality, plus the following new methods:

Construction

  • fromHexString(hex: string) : Bytes - Convert the string hex which must consist of an even number of hexadecimal digits to a ByteArray. The string hex can optionally start with 0x
  • fromI32(i: i32) : Bytes - Convert i to an array of bytes

Type conversions

  • b.toHex() – returns a hexadecimal string representing the bytes in the array
  • b.toString() – converts the bytes in the array to a string of unicode characters
  • b.toBase58() – turns an Ethereum Bytes value to base58 encoding (used for IPFS hashes)

Operators

  • b.concat(other: Bytes) : Bytes - - return new Bytes consisting of this directly followed by other
  • b.concatI32(other: i32) : ByteArray - return new Bytes consisting of this directly follow by the byte representation of other
import { Address } from '@graphprotocol/graph-ts'

Address extends Bytes to represent Ethereum address values.

It adds the following method on top of the Bytes API:

  • Address.fromString(s: string): Address – creates an Address from a hexadecimal string
  • Address.fromBytes(b: Bytes): Address – create an Address from b which must be exactly 20 bytes long. Passing in a value with fewer or more bytes will result in an error

Almacén de API

Enlace a esta sección
import { store } from '@graphprotocol/graph-ts'

The store API allows to load, save and remove entities from and to the Graph Node store.

Entities written to the store map one-to-one to the @entity types defined in the subgraph's GraphQL schema. To make working with these entities convenient, the graph codegen command provided by the Graph CLI generates entity classes, which are subclasses of the built-in Entity type, with property getters and setters for the fields in the schema as well as methods to load and save these entities.

Creacion de entidades

Enlace a esta sección

El siguiente es un patrón común para crear entidades a partir de eventos de Ethereum.

// Import the Transfer event class generated from the ERC20 ABI
import { Transfer as TransferEvent } from '../generated/ERC20/ERC20'
// Import the Transfer entity type generated from the GraphQL schema
import { Transfer } from '../generated/schema'
// Transfer event handler
export function handleTransfer(event: TransferEvent): void {
// Create a Transfer entity, using the transaction hash as the entity ID
let id = event.transaction.hash
let transfer = new Transfer(id)
// Set properties on the entity, using the event parameters
transfer.from = event.params.from
transfer.to = event.params.to
transfer.amount = event.params.amount
// Save the entity to the store
transfer.save()
}

When a Transfer event is encountered while processing the chain, it is passed to the handleTransfer event handler using the generated Transfer type (aliased to TransferEvent here to avoid a naming conflict with the entity type). This type allows accessing data such as the event's parent transaction and its parameters.

Cada entidad debe tener un identificador único para evitar colisiones con otras entidades. Es bastante común que los parámetros de los eventos incluyan un identificador único que pueda ser utilizado. Nota: El uso del hash de la transacción como ID asume que ningún otro evento en la misma transacción crea entidades con este hash como ID.

Carga de entidades desde el store

Enlace a esta sección

Si una entidad ya existe, se puede cargar desde el store con lo siguiente:

let id = event.transaction.hash // or however the ID is constructed
let transfer = Transfer.load(id)
if (transfer == null) {
transfer = new Transfer(id)
}
// Use the Transfer entity as before

As the entity may not exist in the store yet, the load method returns a value of type Transfer | null. It may thus be necessary to check for the null case before using the value.

Note: Loading entities is only necessary if the changes made in the mapping depend on the previous data of an entity. See the next section for the two ways of updating existing entities.

Buscando entidades creadas dentro de un bloque

Enlace a esta sección

As of graph-node v0.31.0, @graphprotocol/graph-ts v0.30.0 and @graphprotocol/graph-cli v0.49.0 the loadInBlock method is available on all entity types.

La API de almacenamiento facilita la recuperación de entidades que se crearon o actualizaron en el bloque actual. Una situación típica para esto es cuando un handler crea una Transacción a partir de algún evento en la cadena, y un handler posterior quiere acceder a esta transacción si existe. En el caso de que la transacción no exista, el subgrafo tendrá que ir a la base de datos solo para averiguar que la entidad no existe; si el autor del subgrafo ya sabe que la entidad debe haber sido creada en el mismo bloque, el uso de loadInBlock evita este viaje de ida y vuelta a la base de datos. Para algunos subgrafos, estas búsquedas perdidas pueden contribuir significativamente al tiempo de indexación.

let id = event.transaction.hash // or however the ID is constructed
let transfer = Transfer.load(id)
if (transfer == null) {
transfer = new Transfer(id)
}
// Usa la identidad de transferencia como se indica arriba

Note: If there is no entity created in the given block, loadInBlock will return null even if there is an entity with the given ID in the store.

Buscando entidades derivadas

Enlace a esta sección

As of graph-node v0.31.0, @graphprotocol/graph-ts v0.31.0 and @graphprotocol/graph-cli v0.51.0 the loadRelated method is available.

This enables loading derived entity fields from within an event handler. For example, given the following schema:

type Token @entity {
id: ID!
holder: Holder!
color: String
}
type Holder @entity {
id: ID!
tokens: [Token!]! @derivedFrom(field: "holder")
}

The following code will load the Token entity that the Holder entity was derived from:

let holder = Holder.load('test-id')
// Load the Token entities associated with a given holder
let tokens = holder.tokens.load()

Actualización de las entidades existentes

Enlace a esta sección

Hay dos maneras de actualizar una entidad existente:

  1. Load the entity with e.g. Transfer.load(id), set properties on the entity, then .save() it back to the store.
  2. Simply create the entity with e.g. new Transfer(id), set properties on the entity, then .save() it to the store. If the entity already exists, the changes are merged into it.

Cambiar las propiedades es sencillo en la mayoría de los casos, gracias a los definidores de propiedades generados:

let transfer = new Transfer(id)
transfer.from = ...
transfer.to = ...
transfer.amount = ...

También es posible desajustar las propiedades con una de las dos instrucciones siguientes:

transfer.from.unset()
transfer.from = null

This only works with optional properties, i.e. properties that are declared without a ! in GraphQL. Two examples would be owner: Bytes or amount: BigInt.

Updating array properties is a little more involved, as the getting an array from an entity creates a copy of that array. This means array properties have to be set again explicitly after changing the array. The following assumes entity has a numbers: [BigInt!]! field.

// This won't work
entity.numbers.push(BigInt.fromI32(1))
entity.save()
// This will work
let numbers = entity.numbers
numbers.push(BigInt.fromI32(1))
entity.numbers = numbers
entity.save()

Eliminar entidades del store

Enlace a esta sección

There is currently no way to remove an entity via the generated types. Instead, removing an entity requires passing the name of the entity type and the entity ID to store.remove:

import { store } from '@graphprotocol/graph-ts'
...
let id = event.transaction.hash
store.remove('Transfer', id)

API de Ethereum

Enlace a esta sección

La API de Ethereum proporciona acceso a los contratos inteligentes, a las variables de estado públicas, a las funciones de los contratos, a los eventos, a las transacciones, a los bloques y a la codificación/decodificación de los datos de Ethereum.

Compatibilidad con los tipos de Ethereum

Enlace a esta sección

As with entities, graph codegen generates classes for all smart contracts and events used in a subgraph. For this, the contract ABIs need to be part of the data source in the subgraph manifest. Typically, the ABI files are stored in an abis/ folder.

With the generated classes, conversions between Ethereum types and the built-in types take place behind the scenes so that subgraph authors do not have to worry about them.

El siguiente ejemplo lo ilustra. Dado un esquema de subgrafos como

type Transfer @entity {
id: Bytes!
from: Bytes!
to: Bytes!
amount: BigInt!
}

and a Transfer(address,address,uint256) event signature on Ethereum, the from, to and amount values of type address, address and uint256 are converted to Address and BigInt, allowing them to be passed on to the Bytes! and BigInt! properties of the Transfer entity:

let id = event.transaction.hash
let transfer = new Transfer(id)
transfer.from = event.params.from
transfer.to = event.params.to
transfer.amount = event.params.amount
transfer.save()

Eventos y datos de bloques/transacciones

Enlace a esta sección

Ethereum events passed to event handlers, such as the Transfer event in the previous examples, not only provide access to the event parameters but also to their parent transaction and the block they are part of. The following data can be obtained from event instances (these classes are a part of the ethereum module in graph-ts):

class Event {
address: Address
logIndex: BigInt
transactionLogIndex: BigInt
logType: string | null
block: Block
transaction: Transaction
parameters: Array<EventParam>
receipt: TransactionReceipt | null
}
class Block {
hash: Bytes
parentHash: Bytes
unclesHash: Bytes
author: Address
stateRoot: Bytes
transactionsRoot: Bytes
receiptsRoot: Bytes
number: BigInt
gasUsed: BigInt
gasLimit: BigInt
timestamp: BigInt
difficulty: BigInt
totalDifficulty: BigInt
size: BigInt | null
baseFeePerGas: BigInt | null
}
class Transaction {
hash: Bytes
index: BigInt
from: Address
to: Address | null
value: BigInt
gasLimit: BigInt
gasPrice: BigInt
input: Bytes
nonce: BigInt
}
class TransactionReceipt {
transactionHash: Bytes
transactionIndex: BigInt
blockHash: Bytes
blockNumber: BigInt
cumulativeGasUsed: BigInt
gasUsed: BigInt
contractAddress: Address
logs: Array<Log>
status: BigInt
root: Bytes
logsBloom: Bytes
}
class Log {
address: Address
topics: Array<Bytes>
data: Bytes
blockHash: Bytes
blockNumber: Bytes
transactionHash: Bytes
transactionIndex: BigInt
logIndex: BigInt
transactionLogIndex: BigInt
logType: string
removed: bool | null
}

Acceso al Estado del Contrato Inteligente

Enlace a esta sección

The code generated by graph codegen also includes classes for the smart contracts used in the subgraph. These can be used to access public state variables and call functions of the contract at the current block.

Un patrón común es acceder al contrato desde el que se origina un evento. Esto se consigue con el siguiente código:

// Import the generated contract class and generated Transfer event class
import { ERC20Contract, Transfer as TransferEvent } from '../generated/ERC20Contract/ERC20Contract'
// Import the generated entity class
import { Transfer } from '../generated/schema'
export function handleTransfer(event: TransferEvent) {
// Bind the contract to the address that emitted the event
let contract = ERC20Contract.bind(event.address)
// Access state variables and functions by calling them
let erc20Symbol = contract.symbol()
}

Transfer is aliased to TransferEvent here to avoid a naming conflict with the entity type

As long as the ERC20Contract on Ethereum has a public read-only function called symbol, it can be called with .symbol(). For public state variables a method with the same name is created automatically.

Cualquier otro contrato que forme parte del subgrafo puede ser importado desde el código generado y puede ser vinculado a una dirección válida.

Tratamiento de las Llamadas Revertidas

Enlace a esta sección

If the read-only methods of your contract may revert, then you should handle that by calling the generated contract method prefixed with try_. For example, the Gravity contract exposes the gravatarToOwner method. This code would be able to handle a revert in that method:

let gravity = Gravity.bind(event.address)
let callResult = gravity.try_gravatarToOwner(gravatar)
if (callResult.reverted) {
log.info('getGravatar reverted', [])
} else {
let owner = callResult.value
}

Ten en cuenta que un nodo Graph conectado a un cliente Geth o Infura puede no detectar todas las reversiones, si confías en esto te recomendamos que utilices un nodo Graph conectado a un cliente Parity.

Codificación/Descodificación ABI

Enlace a esta sección

Data can be encoded and decoded according to Ethereum's ABI encoding format using the encode and decode functions in the ethereum module.

import { Address, BigInt, ethereum } from '@graphprotocol/graph-ts'
let tupleArray: Array<ethereum.Value> = [
ethereum.Value.fromAddress(Address.fromString('0x0000000000000000000000000000000000000420')),
ethereum.Value.fromUnsignedBigInt(BigInt.fromI32(62)),
]
let tuple = tupleArray as ethereum.Tuple
let encoded = ethereum.encode(ethereum.Value.fromTuple(tuple))!
let decoded = ethereum.decode('(address,uint256)', encoded)

Para mas informacion:

Balance of an Address

Enlace a esta sección

The native token balance of an address can be retrieved using the ethereum module. This feature is available from apiVersion: 0.0.9 which is defined subgraph.yaml. The getBalance() retrieves the balance of the specified address as of the end of the block in which the event is triggered.

import { ethereum } from '@graphprotocol/graph-ts'
let address = Address.fromString('0xd8dA6BF26964aF9D7eEd9e03E53415D37aA96045')
let balance = ethereum.getBalance(address) // returns balance in BigInt

Check if an Address is a Contract or EOA

Enlace a esta sección

To check whether an address is a smart contract address or an externally owned address (EOA), use the hasCode() function from the ethereum module which will return boolean. This feature is available from apiVersion: 0.0.9 which is defined subgraph.yaml.

import { ethereum } from '@graphprotocol/graph-ts'
let contractAddr = Address.fromString('0x2E645469f354BB4F5c8a05B3b30A929361cf77eC')
let isContract = ethereum.hasCode(contractAddr).inner // returns true
let eoa = Address.fromString('0xd8dA6BF26964aF9D7eEd9e03E53415D37aA96045')
let isContract = ethereum.hasCode(eoa).inner // returns false

API de Registro

Enlace a esta sección
import { log } from '@graphprotocol/graph-ts'

The log API allows subgraphs to log information to the Graph Node standard output as well as Graph Explorer. Messages can be logged using different log levels. A basic format string syntax is provided to compose log messages from argument.

The log API includes the following functions:

  • log.debug(fmt: string, args: Array<string>): void - logs a debug message.
  • log.info(fmt: string, args: Array<string>): void - logs an informational message.
  • log.warning(fmt: string, args: Array<string>): void - logs a warning.
  • log.error(fmt: string, args: Array<string>): void - logs an error message.
  • log.critical(fmt: string, args: Array<string>): void – logs a critical message and terminates the subgraph.

The log API takes a format string and an array of string values. It then replaces placeholders with the string values from the array. The first {} placeholder gets replaced by the first value in the array, the second {} placeholder gets replaced by the second value and so on.

log.info('Message to be displayed: {}, {}, {}', [value.toString(), anotherValue.toString(), 'already a string'])

Registro de uno o varios valores

Enlace a esta sección
Registro de un solo valor
Enlace a esta sección

In the example below, the string value "A" is passed into an array to become['A'] before being logged:

let myValue = 'A'
export function handleSomeEvent(event: SomeEvent): void {
// Displays : "My value is: A"
log.info('My value is: {}', [myValue])
}
Registro de una sola entrada de una matriz existente
Enlace a esta sección

En el ejemplo siguiente, sólo se registra el primer valor de la matriz de argumentos, a pesar de que la matriz contiene tres valores.

let myArray = ['A', 'B', 'C']
export function handleSomeEvent(event: SomeEvent): void {
// Displays : "My value is: A" (Even though three values are passed to `log.info`)
log.info('My value is: {}', myArray)
}

Registro de múltiples entradas de una matriz existente

Enlace a esta sección

Each entry in the arguments array requires its own placeholder {} in the log message string. The below example contains three placeholders {} in the log message. Because of this, all three values in myArray are logged.

let myArray = ['A', 'B', 'C']
export function handleSomeEvent(event: SomeEvent): void {
// Displays : "My first value is: A, second value is: B, third value is: C"
log.info('My first value is: {}, second value is: {}, third value is: {}', myArray)
}
Registro de una entrada específica de una matriz existente
Enlace a esta sección

Para mostrar un valor específico en el array, se debe proporcionar el valor indexado.

export function handleSomeEvent(event: SomeEvent): void {
// Displays : "My third value is C"
log.info('My third value is: {}', [myArray[2]])
}
Registro de información de eventos
Enlace a esta sección

El ejemplo siguiente registra el número de bloque, el hash del bloque y el hash de la transacción de un evento:

import { log } from '@graphprotocol/graph-ts'
export function handleSomeEvent(event: SomeEvent): void {
log.debug('Block number: {}, block hash: {}, transaction hash: {}', [
event.block.number.toString(), // "47596000"
event.block.hash.toHexString(), // "0x..."
event.transaction.hash.toHexString(), // "0x..."
])
}
import { ipfs } from '@graphprotocol/graph-ts'

Smart contracts occasionally anchor IPFS files on chain. This allows mappings to obtain the IPFS hashes from the contract and read the corresponding files from IPFS. The file data will be returned as Bytes, which usually requires further processing, e.g. with the json API documented later on this page.

Dado un hash o ruta de IPFS, la lectura de un archivo desde IPFS se realiza de la siguiente manera:

// Colocar esto dentro del gestor de eventos del mapeo
let hash = 'QmTkzDwWqPbnAh5YiV5VwcTLnGdwSNsNTn2aDxdXBFca7D'
let data = ipfs.cat(hash)
// Rutas como `QmTkzDwWqPbnAh5YiV5VwcTLnGdwSNsNTn2aDxdXBFca7D/Makefile`
// que incluye documentos en directorios que son soportados
let path = 'QmTkzDwWqPbnAh5YiV5VwcTLnGdwSNsNTn2aDxdXBFca7D/Makefile'
let data = ipfs.cat(path)

Note: ipfs.cat is not deterministic at the moment. If the file cannot be retrieved over the IPFS network before the request times out, it will return null. Due to this, it's always worth checking the result for null.

It is also possible to process larger files in a streaming fashion with ipfs.map. The function expects the hash or path for an IPFS file, the name of a callback, and flags to modify its behavior:

import { JSONValue, Value } from '@graphprotocol/graph-ts'
export function processItem(value: JSONValue, userData: Value): void {
// See the JSONValue documentation for details on dealing
// with JSON values
let obj = value.toObject()
let id = obj.get('id')
let title = obj.get('title')
if (!id || !title) {
return
}
// Callbacks can also created entities
let newItem = new Item(id)
newItem.title = title.toString()
newitem.parent = userData.toString() // Set parent to "parentId"
newitem.save()
}
// Put this inside an event handler in the mapping
ipfs.map('Qm...', 'processItem', Value.fromString('parentId'), ['json'])
// Alternatively, use `ipfs.mapJSON`
ipfs.mapJSON('Qm...', 'processItem', Value.fromString('parentId'))

The only flag currently supported is json, which must be passed to ipfs.map. With the json flag, the IPFS file must consist of a series of JSON values, one value per line. The call to ipfs.map will read each line in the file, deserialize it into a JSONValue and call the callback for each of them. The callback can then use entity operations to store data from the JSONValue. Entity changes are stored only when the handler that called ipfs.map finishes successfully; in the meantime, they are kept in memory, and the size of the file that ipfs.map can process is therefore limited.

On success, ipfs.map returns void. If any invocation of the callback causes an error, the handler that invoked ipfs.map is aborted, and the subgraph is marked as failed.

import { crypto } from '@graphprotocol/graph-ts'

The crypto API makes a cryptographic functions available for use in mappings. Right now, there is only one:

  • crypto.keccak256(input: ByteArray): ByteArray
import { json, JSONValueKind } from '@graphprotocol/graph-ts'

JSON data can be parsed using the json API:

  • json.fromBytes(data: Bytes): JSONValue – parses JSON data from a Bytes array interpreted as a valid UTF-8 sequence
  • json.try_fromBytes(data: Bytes): Result<JSONValue, boolean> – safe version of json.fromBytes, it returns an error variant if the parsing failed
  • json.fromString(data: string): JSONValue – parses JSON data from a valid UTF-8 String
  • json.try_fromString(data: string): Result<JSONValue, boolean> – safe version of json.fromString, it returns an error variant if the parsing failed

The JSONValue class provides a way to pull values out of an arbitrary JSON document. Since JSON values can be booleans, numbers, arrays and more, JSONValue comes with a kind property to check the type of a value:

let value = json.fromBytes(...)
if (value.kind == JSONValueKind.BOOL) {
...
}

In addition, there is a method to check if the value is null:

  • value.isNull(): boolean

When the type of a value is certain, it can be converted to a built-in type using one of the following methods:

  • value.toBool(): boolean
  • value.toI64(): i64
  • value.toF64(): f64
  • value.toBigInt(): BigInt
  • value.toString(): string
  • value.toArray(): Array<JSONValue> - (and then convert JSONValue with one of the 5 methods above)

Referencias de Tipo de Conversiones

Enlace a esta sección
Source(s)DestinationConversion function
AddressBytesnone
AddressStrings.toHexString()
BigDecimalStrings.toString()
BigIntBigDecimals.toBigDecimal()
BigIntString (hexadecimal)s.toHexString() or s.toHex()
BigIntString (unicode)s.toString()
BigInti32s.toI32()
BooleanBooleannone
Bytes (signed)BigIntBigInt.fromSignedBytes(s)
Bytes (unsigned)BigIntBigInt.fromUnsignedBytes(s)
BytesString (hexadecimal)s.toHexString() or s.toHex()
BytesString (unicode)s.toString()
BytesString (base58)s.toBase58()
Bytesi32s.toI32()
Bytesu32s.toU32()
BytesJSONjson.fromBytes(s)
int8i32none
int32i32none
int32BigIntBigInt.fromI32(s)
uint24i32none
int64 - int256BigIntnone
uint32 - uint256BigIntnone
JSONbooleans.toBool()
JSONi64s.toI64()
JSONu64s.toU64()
JSONf64s.toF64()
JSONBigInts.toBigInt()
JSONstrings.toString()
JSONArrays.toArray()
JSONObjects.toObject()
StringAddressAddress.fromString(s)
BytesAddressAddress.fromBytes(s)
StringBigIntBigInt.fromString(s)
StringBigDecimalBigDecimal.fromString(s)
String (hexadecimal)BytesByteArray.fromHexString(s)
String (UTF-8)BytesByteArray.fromUTF8(s)

Metadatos de la Fuente de Datos

Enlace a esta sección

You can inspect the contract address, network and context of the data source that invoked the handler through the dataSource namespace:

  • dataSource.address(): Address
  • dataSource.network(): string
  • dataSource.context(): DataSourceContext

Entity y DataSourceContext

Enlace a esta sección

The base Entity class and the child DataSourceContext class have helpers to dynamically set and get fields:

  • setString(key: string, value: string): void
  • setI32(key: string, value: i32): void
  • setBigInt(key: string, value: BigInt): void
  • setBytes(key: string, value: Bytes): void
  • setBoolean(key: string, value: bool): void
  • setBigDecimal(key, value: BigDecimal): void
  • getString(key: string): string
  • getI32(key: string): i32
  • getBigInt(key: string): BigInt
  • getBytes(key: string): Bytes
  • getBoolean(key: string): boolean
  • getBigDecimal(key: string): BigDecimal

DataSourceContext in Manifest

Enlace a esta sección

The context section within dataSources allows you to define key-value pairs that are accessible within your subgraph mappings. The available types are Bool, String, Int, Int8, BigDecimal, Bytes, List, and BigInt.

Here is a YAML example illustrating the usage of various types in the context section:

dataSources:
- kind: ethereum/contract
name: ContractName
network: mainnet
context:
bool_example:
type: Bool
data: true
string_example:
type: String
data: 'hello'
int_example:
type: Int
data: 42
int8_example:
type: Int8
data: 127
big_decimal_example:
type: BigDecimal
data: '10.99'
bytes_example:
type: Bytes
data: '0x68656c6c6f'
list_example:
type: List
data:
- type: Int
data: 1
- type: Int
data: 2
- type: Int
data: 3
big_int_example:
type: BigInt
data: '1000000000000000000000000'
  • Bool: Specifies a Boolean value (true or false).
  • String: Specifies a String value.
  • Int: Specifies a 32-bit integer.
  • Int8: Specifies an 8-bit integer.
  • BigDecimal: Specifies a decimal number. Must be quoted.
  • Bytes: Specifies a hexadecimal string.
  • List: Specifies a list of items. Each item needs to specify its type and data.
  • BigInt: Specifies a large integer value. Must be quoted due to its large size.

This context is then accessible in your subgraph mapping files, enabling more dynamic and configurable subgraphs.

Editar página

Anterior
Creación de un subgrafo
Siguiente
Problemas comunes de AssemblyScript
Editar página